
 Matlab

33

Chapter four
Programming in MATLAB

CONDITIONAL STATEMENTS(if):
A conditional statement is a command that allows MATLAB to make a decision of
whether to execute a group of commands that follow the conditional statement, or
to skip these commands. In a conditional statement a conditional expression is
stated. If the expression is true, a group of commands that follow the statement are
executed. If the expression is false, the computer skips the group. The basic form
of a conditional statement is

• Conditional statements can be a part of a program written in a script file or a user-
defined function
• As shown below, for every if statement there is an end statement.
 The if statement is commonly used in three structures, if-end, if-else-end,
and if-elseif-else-end, which are described next.

The if-end Structure:

The if-end conditional statement is shown schematically in Figure below.
The figure shows how the commands are typed in the program, and a flowchart
that symbolically shows the flow, or the sequence, in which the commands are
executed. As the program executes, it reaches the if statement. If the conditional
expression in the if statement is true (1), the program continues to execute the
commands that follow the if statement all the way down to the end statement. If the
conditional expression is false (0), the program skips the group of commands
between the if and the end, and continues with the commands that follow the
end.

The words if and end appear on the screen in blue, and the commands
between the if statement and the end statement are automatically indented (they
don’t have to be), which makes the program easier to read. An example where the
if-end statement is used in a script file is shown in Sample example.

 Matlab

34

Example: A worker is paid according to his hourly wage up to 40 hours, and 50%
more for overtime. Write a program in a script file that calculates the pay to a
worker. The program asks the user to enter the number of hours and the hourly
wage. The program then displays the pay.
Solution
The program in a script file is shown below. The program first calculates the pay
by multiplying the number of hours by the hourly wage. Then an if statement
checks whether the number of hours is greater than 40. If so, the next line is
executed and the extra pay for the hours above 40 is added. If not, the program
skips to the end.

Application of the program (in the Command Window) for two cases is shown
below (the file was saved as Workerpay):

The if-else-end Structure:
The if-else-end structure provides a means for choosing one group of commands,
out of a possible two groups, for execution. The if-else-end structure is shown in
Figure below. The figure shows how the commands are typed in the program, and
a flowchart that illustrates the flow, or the sequence, in which the commands are
executed.

 Matlab

35

The first line is an if statement with a conditional expression. If the conditional
expression is true, the program executes group 1 of commands between the if and
the else statements and then skips to the end. If the conditional expression is
false, the program skips to the else and then executes group 2 of commands
between the else and the end.
It should be pointed out here that several elseif statements and associated
groups of commands can be added. In this way more conditions can be included.
Also, the else statement is optional. This means that in the case of several elseif
statements and no else statement, if any of the conditional statements is true the
associated commands are executed; otherwise nothing is executed.

THE switch-case STATEMENT:
The switch-case statement is another method that can be used to direct the flow of
a program. It provides a means for choosing one group of commands for execution
out of several possible groups. The structure of the statement is shown in Figure
below
• The first line is the switch command, which has the form:

he switch expression can be a scalar or a string. Usually it is a variable that has an
assigned scalar or a string. It can also be, however, a mathematical expression that
includes pre-assigned variables and can be evaluated
• Following the switch command are one or several case commands. Each has a
value (can be a scalar or a string) next to it (value1, value2, etc.) and an associated
group of commands below it.
• After the last case command there is an optional otherwise command followed by
a group of commands.
• The last line must be an end statement.

 Matlab

36

How does the switch-case statement work?
The value of the switch expression in the switch command is compared with the
values that are next to each of the case statements. If a match is found, the group of
commands that follow the case statement with the match are executed. (Only one
group of commands-the one between the case that matches and either the case,
otherwise, or end statement that is next—is executed).

• If there is more than one match, only the first matching case is executed.
• If no match is found and the otherwise statement (which is optional) is
present, the group of commands between otherwise and end is executed.
• If no match is found and the otherwise statement is not present, none of the
command groups is executed.
• A case statement can have more than one value. This is done by typing the
values in the form: {value1, value2, value3, ...} . (This form, which is
not covered in this book, is called a cell array.) The case is executed if at least one
of the values matches the value of switch expression.

Example: Write a program in a script file that converts a quantity of energy (work)
given in units of either joule, ft-lb, cal, or eV to the equivalent quantity in different
units specified by the user. The program asks the user to enter the quantity of
energy, it current units, and the desired new units. The output is the quantity of
energy in the new units.

The conversion factors are:
Use the program to:
(a) Convert 150 J to ft-lb.
(b) Convert 2,800 cal to J.
(c) Convert 2.7 eV to cal.

 Matlab

37

Solution
The program includes two sets of switch-case statements and one if-else-
end statement. The first switch-case statement is used to convert the input quantity
from its initial units to units of joules. The second is used to convert the quantity
from joules to the specified new units. The if-else-end statement is used to
generate an error message if units are entered incorrectly.

 Matlab

38

As an example, the script file (saved as Energy Conversion) is used next in the
Command Window to make the conversion in part (b) of the problem statement.

LOOPS:
for-end Loops:
 In for-end loops the execution of a command, or a group of commands, is
repeated a predetermined number of times. The form of a loop is shown in Figure
below.
 • The loop index variable can have any variable name (usually i, j , k, m,
and n are used, however, i and j should not be used if MATLAB is used with
complex numbers).

• In the first pass k = f and the computer executes the commands between the
for and end commands. Then, the program goes back to the for command for
the second pass. k obtains a new value equal to k = f + s, and the commands
between the for and end commands are executed with the new value of k. The
process repeats itself until the last pass, where k = t. Then the program does not

 Matlab

39

go back to the for, but continues with the commands that follow the end command.
For example, if k = 1:2:9, there are five loops, and the corresponding values of
k are 1, 3, 5, 7, and 9.
• The increment s can be negative (i.e.; k = 25:–5:10 produces four passes with
k=25, 20, 15, 10).
• If the increment value s is omitted, the value is 1 (default) (i.e.; k = 3:7 produces
five passes with k = 3, 4, 5, 6, 7).
• If f = t, the loop is executed once.
• If f > t and s > 0, or if f < t and s < 0, the loop is not executed.
• If the values of k, s, and t are such that k cannot be equal to t, then if s is
positive, the last pass is the one where k has the largest value that is smaller than t
(i.e., k = 8:10:50 produces five passes with k = 8, 18, 28, 38, 48). If s is negative,
the last pass is the one where k has the smallest value that is larger than t.
• In the for command k can also be assigned a specific value (typed as a vector).
Example: for k = [7 9 –1 3 3 5] .
• The value of k should not be redefined within the loop.
• Each for command in a program must have an end command.
• The value of the loop index variable (k) is not displayed automatically. It is
possible to display the value in each pass (which is sometimes useful for
debugging) by typing k as one of the commands in the loop.
• When the loop ends, the loop index variable (k) has the value that was last
assigned to it.
A simple example of a for-end loop (in a script file) is:

When this program is executed, the loop is executed four times. The value of k in
the four passes is k = 1, 4, 7, and 10, which means that the values that are assigned
to x in the passes are x = 1, 16, 49, and 100, respectively. Since a semicolon is not
typed at the end of the second line, the value of x is displayed in the Command
Window at each pass. When the script file is executed, the display in the Command
Window is:

Sample Problem: Sum of a series

 Matlab

40

(a) Use a for-end loop in a script file to calculate the sum of the first n terms of the

series: . Execute the script file for n = 4 and n = 20.

(b) The function sin(x) can be written as a Taylor series by:

Write a user-defined function file that calculates sin(x) by using the Taylor series.
For the function name and arguments use y = Tsin(x,n) . The input
arguments are the angle x in degrees and n the number of terms in the series. Use
the function to calculate sin(150) using three and seven terms.
Solution
(a) A script file that calculates the sum of the first n terms of the series is shown
below. The summation is done with a loop. In each pass one term of the series is
calculated

(in the first pass the first term, in the second pass the second term, and so on) and
is added to the sum of the previous elements. The file is saved as Exp6_5a and then
executed twice in the Command Window:

(b) A user-defined function file that calculates sin(x) by adding n terms of a
Taylor series is shown below.

 Matlab

41

The first element corresponds to k = 0, which means that in order to add n terms
of the series, in the last loop k = n – 1. The function is used in the Command
Window to calculate sin(150) using three and seven terms

Sample Problem: Modify vector elements
A vector is given by V = [5, 17, –3, 8, 0, –7, 12, 15, 20, –6, 6, 4, –7, 16]. Write a
program as a script file that doubles the elements that are positive and are divisible
by 3 or 5, and, raises to the power of 3 the elements that are negative but greater
than –5.
Solution
The problem is solved by using a for-end loop that has an if-elseif-end conditional
statement inside. The number of passes is equal to the number of elements in the
vector. In each pass one element is checked by the conditional statement. The
element is changed if it satisfies the conditions in the problem statement. A
program in a script file that carries out the required operations is:

 Matlab

42

The file is saved as Exp7_6 and then executed in the Command Window:

while-end Loops:
while-end loops are used in situations when looping is needed but the number
of passes is not known in advance. In while-end loops the number of passes is
not specified when the looping process starts. Instead, the looping process
continues until a stated condition is satisfied. The structure of a while-end loop
is shown in figure below:

The first line is a while statement that includes a conditional expression. When
the program reaches this line the conditional expression is checked. If it is false
(0), MATLAB skips to the end statement and continues with the program. If the
conditional expression is true (1), MATLAB executes the group of commands that
follow between the while and end commands. Then MATLAB jumps back to
the while command and checks the conditional expression. This looping process
continues until the conditional expression is false.

For a while-end loop to execute properly:
• The conditional expression in the while command must include at least one
variable.
• The variables in the conditional expression must have assigned values when
MATLAB executes the while command for the first time.
• At least one of the variables in the conditional expression must be assigned a new
value in the commands that are between the while and the end. Otherwise, once

 Matlab

43

the looping starts it will never stop since the conditional expression will remain
true.
An example of a simple while-end loop is shown in the following program. In this
program a variable x with an initial value of 1 is doubled in each pass as long as its
value is equal to or smaller than 15.

When this program is executed the display in the Command Window is:

Important note:
When writing a while-end loop, the programmer has to be sure that the variable
(or variables) that are in the conditional expression and are assigned new values
during the looping process will eventually be assigned values that make the
conditional expression in the while command false. Otherwise the looping will
continue indefinitely (indefinite loop). In the example above if the conditional
expression is changed to x >= 0.5, the looping will continue indefinitely. Such a
situation can be avoided by counting the passes and stopping the looping if the
number of passes exceeds some large value. This can be done by adding the
maximum number of passes to the conditional expression, or by using the break
command.
 Since no one is free from making mistakes, a situation of indefinite looping can
occur in spite of careful programming. If this happens, the user can stop the
execution of an indefinite loop by pressing the Ctrl + C or Ctrl + Break keys.
Sample Problem : Taylor series representation of a function

The function can be represented in a Taylor series by
Write a program in a script file that determines by using the Taylor series
representation. The program calculates by adding terms of the series and stopping.
When the absolute value of the term that was added last is smaller than 0.0001.
Use a while-end loop, but limit the number of passes to 30. If in the 30th pass
the value of the term that is added is not smaller than 0.0001, the program stops
and displays a message that more than 30 terms are needed.

 Matlab

44

Use the program to calculate:
Solution
The first few terms of the Taylor series are:

A program that uses the series to calculate the function is shown next. The program
asks the user to enter the value of x. Then the first term, an, is assigned the number
1, and an is assigned to the sum S. Then, from the second term on, the program
uses a while loop to calculate the nth term of the series and add it to the sum. The
program also counts the number of terms n. The conditional expression in the
while command is true as long as the absolute value of the nth an term is larger
than 0.0001, and the number of passes n is smaller than 30. This means that if the
30th term is not smaller than 0.0001, the looping stops.

The program uses an if-else-end statement to display the results. If the
looping stopped because the 30th term is not smaller than 0.0001, it displays a
message indicating this. If the value of the function is calculated successfully, it
displays the value of the function and the number of terms used. When the program
executes, the number of passes depends on the value of x. The program (saved as

expox) is used to calculate

 Matlab

45

THE break AND continue COMMANDS

The break command:

• When inside a loop (for or while), the break command terminates the
execution of the loop (the whole loop, not just the last pass). When the break
command appears in a loop, MATLAB jumps to the end command of the loop
and continues with the next command (it does not go back to the for command of
that loop).
• If the break command is inside a nested loop, only the nested loop is
terminated.
• When a break command appears outside a loop in a script or function file, it
terminates the execution of the file.
• The break command is usually used within a conditional statement. In loops it
provides a method to terminate the looping process if some condition is met —for
example, if the number of loops exceeds a predetermined value, or an error in
some numerical procedure is smaller than a predetermined value. When typed
outside a loop, the break command provides a means to terminate the execution
of a file, such as when data transferred into a function file is not consistent with
what is expected.

The continue command:
• The continue command can be used inside a loop (for or while) to stop
the present pass and start the next pass in the looping process.
• The continue command is usually a part of a conditional statement. When
MATLAB reaches the continue command, it does not execute the remaining
commands in the loop, but skips to the end command of the loop and then starts a
new pass.

Example: Flight of a model rocke
The flight of a model rocket can be modeled as follows. During the first 0.15s the
rocket is propelled upward by the rocket engine with a force of 16 N. The rocket
then flies up while slowing down under the force of gravity. After it reaches the

 Matlab

46

apex, the rocket starts to fall back down. When its downward velocity reaches 20
m/s a parachute opens (assumed to open instantly), and the rocket continues to
drop at a constant speed of 20 m/s until it hits the ground. Write a program that
calculates and plots the speed and altitude of the rocket as a function of time during
the flight.
Solution
The rocket is assumed to be a particle that moves along a straight line in the
vertical plane. For motion with constant acceleration along a straight line, the
velocity and position as a function of time are given by

where and are the initial velocity and position, respectively. In the computer
program the flight of the rocket is divided into three segments. Each segment is
calculated in a while loop. In every pass the time increases by an increment.

Segment 1: The first 0.15s when the rocket engine is on. During this period, the
rocket moves up with a constant acceleration. The acceleration is determined by
drawing a free body and a mass acceleration diagram (shown on the right). From
Newton’s second law, the sum of the forces in the vertical direction is equal to the
mass times the acceleration (equilibrium equation)

Solving the equation for the acceleration gives:

The velocity and height as a function of time are:

where the initial velocity and initial position are both zero. In the computer
program this segment starts at t = 0, and the looping continues as long as

The time, velocity, and height at the end of this segment are , , and .

 Matlab

47

Segment 2: The motion from when the engine stops until the parachute opens. In
this segment the rocket moves with a constant deceleration g. The speed and height
of the rocket as functions of time are given by:

In this segment the looping continues until the velocity of the rocket is –20 m/s
(negative since the rocket moves down). The time and height at the end of this
segment are and .
Segment 3: The motion from when the parachute opens until the rocket hits the
ground. In this segment the rocket moves with constant velocity (zero

acceleration). The height as a function of time is given by

where is the constant velocity after the parachute opens. In this segment the
looping continues as long as the height is greater than zero. A program in a script
file that carries out the calculations is shown below.

 Matlab

48

The accuracy of the results depends on the magnitude of the time increment Dt.
An increment of 0.01 s appears to give good results. The conditional expression in
the while commands also includes a condition for n (if n is larger than 50,000 the
loop stops). This is done as a precaution to avoid an infinite loop in case there is an
error in an of the statements inside the loop. The plots generated by the program
are shown below (axis labels and text were added to the plots using the Plot Editor)

 Matlab

49

Example: AC to DC converter
A half-wave diode rectifier is an electrical circuit that converts AC voltage to DC
voltage. A rectifier circuit that consists of an AC voltage source, a diode, a
capacitor, and a load (resistor) is shown in the figure. The voltage of the source is

, where , in which f is the frequency. The operation of the
circuit is illustrated in the lower diagram where the dashed line shows the source
voltage and the solid line shows the voltage across the resistor. In the first cycle,

the diode is on (conducting current) from . At this time the diode
turns off and the power to the resistor is supplied by the discharging capacitor. At

the diode turns on again and continues to conduct current until . The
cycle continues as long as the voltage source is on. In this simplified analysis of
this circuit, the diode is assumed to be ideal and the capacitor is assumed to have

no charge initially . When the diode is on, the resistor’s voltage and
current are given by:

The current in the capacitor is:

When the diode is off, the voltage across the resistor is given by:

The times when the diode switches off are calculated from the

condition . The diode switches on again when the voltage of the source
reaches the voltage across the resistor (time in the figure).
Write a MATLAB program that plots the voltage across the resistor and the
voltage of the source as a function of time for . The resistance of the

load is 1,800 Ω, the voltage source . To examine the effect of
capacitor size on the voltage across the load, execute the program twice, once with

 and once with

Solution
A program that solves the problem is presented below. The program has two

parts—one that calculates the voltage when the diode is on, and the other when
the diode is off. The switch command is used for switching between the two

parts. The calculations start with the diode on , and when

the value of state is changed to ‘off’ , and the program switches to the

commands that calculate for this state. These calculations continue until
when the program switches back to the equations that are valid when the diode is
on.

 Matlab

50

The two plots generated by the program are shown below. One plot shows the

result with and the other with . It can be observed that with
a larger capacitor the DC voltage is smoother (smaller ripple in the wave).

 Matlab

51

